Part Number Hot Search : 
FCX717 SE95DP SR10100 DB152 SC4901 SD1400 3U7R5HS SEMIC
Product Description
Full Text Search
 

To Download IRFS7437PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  september 06, 2012 www.irf.com 1 hexfet   power mosfet benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free  halogen-free fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature applications  brushed motor drive applications  bldc motor drive applications  battery powered circuits  half-bridge and full-bridge topologies  synchronous rectifier applications  resonant mode power supplies  or-ing and redundant power switches  dc/dc and ac/dc converters  dc/ac inverters gds gate drain source 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 250 i d , d r a i n c u r r e n t ( a ) limited by package   
    4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 v gs , gate-to-source voltage (v) 0 1 2 3 4 5 6 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) t j = 25c t j = 125c i d = 100a d s g d s g d 2 pak IRFS7437PBF to-262 irfsl7437pbf s d g d ordering information base part number package type standard pack complete part form quantity number irfsl7437pbf to-262 tube 50 irfsl7437pbf IRFS7437PBF d2pak tube 50 IRFS7437PBF IRFS7437PBF d2pak tape and reel left 800 irfs7437trlpbf v dss 40v r ds(on) typ. 1.4m . 1. i d (silicon limited) 250a i d (package limited) 195a

  2 www.irf.com september 06, 2012    calculated continuous current based on maximum allowable junction temperature. bond wire current limit is 195a. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.  
   repetitive rating; pulse width limited by max. junction temperature.   limited by t jmax , starting t j = 25c, l = 0.069mh r g = 25 , i as = 100a, v gs =10v.  i sd 100a, di/dt 1166a/ s, v dd v (br)dss , t j 175c.   pulse width 400 s; duty cycle 2%.   c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .      
 this value determined from sample failure population, starting t j = 25c, l=0.095mh, r g = 25 , i as = 100a, v gs =10v static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 ??? ??? v v (br)dss / t j breakdown voltage temp. coefficient ??? 0.029 ??? v/c r ds(on) static drain-to-source on-resistance ??? 1.4 1.8 ??? 2.0 ??? v gs( th) gate threshold voltage 2.2 3.0 3.9 v i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 2.2 ??? conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1ma v gs = 10v, i d = 100a v gs = 6.0v, i d = 50a v ds = v gs , i d = 150 a v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c v gs = 20v v gs = -20v absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery v/ns t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj e as (tested) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy  mj thermal resistance symbol parameter typ. max. units r  ??? 0.65 r  ??? 40 max. 250  180 1000 195 c/w a c 300 350 see fig. 14, 15, 22a, 22b 230 3.0 500 -55 to + 175 20 1.5 10lbf  in (1.1n  m)

  www.irf.com 3 september 06, 2012 d s g dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 160 ??? ??? s q g total gate charge ??? 150 225 nc q gs gate-to-source charge ??? 41 ??? q gd gate-to-drain ("miller") charge ??? 51 ??? q sync total gate charge sync. (q g - q gd ) ??? 99 ??? t d(on) turn-on delay time ??? 19 ??? ns t r rise time ??? 70 ??? t d(off) turn-off delay time ??? 78 ??? t f fall time ??? 53 ??? c iss input capacitance ??? 7330 ??? pf c oss output capacitance ??? 1095 ??? c rss reverse transfer capacitance ??? 745 ??? c oss eff. (er) effective output capacitance (energy related)  ??? 1310 ??? c oss eff. (tr) effective output capacitance (time related)  ??? 1735 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 250  a (body diode) i sm pulsed source current ??? ??? 1000 a (body diode)  v sd diode forward voltage ??? 1.0 1.3 v t rr reverse recovery time ??? 30 ??? ns t j = 25c v r = 34v, ??? 30 ??? t j = 125c i f = 100a q rr reverse recovery charge ??? 24 ??? nc t j = 25c di/dt = 100a/ s  ??? 25 ??? t j = 125c i rrm reverse recovery current ??? 1.3 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) conditions v gs = 10v  v dd = 20v i d = 100a, v ds =20v, v gs = 10v conditions v ds = 10v, i d = 100a i d = 100a v ds =20v t j = 25c, i s = 100a, v gs = 0v  integral reverse p-n junction diode. mosfet symbol showing the v gs = 0v, v ds = 0v to 32v v gs = 10v  v gs = 0v v ds = 25v ? = 1.0 mhz, see fig. 5 v gs = 0v, v ds = 0v to 32v , see fig. 11 i d = 30a r g = 2.7

  4 www.irf.com september 06, 2012 fig 3. typical output characteristics fig 5. typical transfer characteristics fig 6. normalized on-resistance vs. temperature fig 4. typical output characteristics fig 8. typical gate charge vs. gate-to-source voltage fig 7. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60 s pulse width tj = 175c 4.5v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 100a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 40 80 120 160 200 q g total gate charge (nc) 0 2 4 6 8 10 12 14 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 100a 3 4 5 6 7 8 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 10v 60 s pulse width

  www.irf.com 5 september 06, 2012 fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy fig 13. typical on-resistance vs. drain current 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 40 42 44 46 48 50 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 1.0ma 0 10 20 30 40 50 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 e n e r g y ( j ) 0.1 1 10 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec 100 sec dc operation in this area limited by r ds (on) limited by package 0 100 200 300 400 500 i d , drain current (a) 1 2 3 4 5 6 7 8 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) v gs = 5.5v v gs = 6.0v v gs = 7.0v vgs = 8.0v vgs = 10v

  6 www.irf.com september 06, 2012 fig 14. maximum effective transient thermal impedance, junction-to-case fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 22a, 22b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. (single pulse) allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 350 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 100a

  www.irf.com 7 september 06, 2012  
       fig 17. threshold voltage vs. temperature 

        
         
       -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 150 a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 20 40 60 80 100 120 140 q r r ( a ) i f = 100a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 i r r ( a ) i f = 100a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 20 40 60 80 100 120 140 q r r ( a ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 i r r ( a ) i f = 60a v r = 34v t j = 25c t j = 125c

  8 www.irf.com september 06, 2012 fig 24a. switching time test circuit fig 24b. switching time waveforms fig 23b. unclamped inductive waveforms fig 23a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 25a. gate charge test circuit fig 25b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 22.         for n-channel hexfet   power mosfets  
     ? 
     ?     ?

         p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    !"  # $%#&'&%  + - + + + - - -       ?      !  ?   " #$## ?        %  && ? #$##'$

   d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f  ( ) 1 *  %   0.1 %      '(  + -  

  www.irf.com 9 september 06, 2012   
   
   

 

 
  dat e code ye ar 0 = 2000 we e k 02 a = assembly site code rectifier int ernational part number p = designates lead - free product (optional) f 530s in the assembly line "l" as s e mble d on ww 02, 2000 t his is an irf 530s wit h lot code 8024 international logo rectifier lot code as s e mb l y year 0 = 2000 part number dat e code line l we e k 02 or f530s logo as s e mb l y lot code  
         
    

  10 www.irf.com september 06, 2012 to-262 part marking information to-262 package outline dimensions are shown in millimeters (inches) logo rectifier int ernational lot code assembly logo rectifier int ernat ional dat e code week 19 ye ar 7 = 1997 part number a = assembly site code or product (optional) p = de s i gnat e s l e ad- f r e e example: this is an irl3103l lot code 1789 assembly part number dat e code we e k 19 line c lot code ye ar 7 = 1997 as s e mb le d on ww 19, 1997 in the assembly line "c"  
         
    

  www.irf.com 11 september 06, 2012 data and specifications subject to change without notice. ir world headquarters: 101n sepulveda., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information .  
!     " !  #   
 ! $% " & &%%%! ' ! 
 "
 ( )
!   ' "   
"
 
     ) ' 
      #   
 ! 
     ! ! ! '  &&%%%! '%  

  *
 "
   !+,,    '  ! 
  qualification level moisture sensitivity level d2pak ms l 1 (per je de c j-s t d-020d ??? ) to-262 not applicable rohs compliant qualification information ? industrial?? (per jedec jesd47f??? guidelines) yes


▲Up To Search▲   

 
Price & Availability of IRFS7437PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X